Ref (5) 1979

PROXIMITY

by

A.G. PORTELA

ABSTRACT

"Distance", in a conversational context, has not the same strict meaning used in mathematical language.

Some kind of a "fuzzy-distance" should be formerly defined.

The word "fuzzy" being so much connected to fuzzy-sets, it was deemed convenient to coin a new word, namely Proximity (or PROX).

Various types or classes of Proximities can be introduced.

Usually some kind of "triangular law" is imposed in many classes of Prox.

Proximities have various applications namely in graphs and hypergraphs, thermodynamics, mechanics, physics, etc..

RESUME

Distance, dans un contexte conversationnel, n'a pas la même stricte signification employée en langage mathématique.

Une certaine forme de distance-floue devrait être définie. Le mot flou, étant si connecté à la théorie des ensembles-flous, on a jugé utile introduire un vocable nouveau comme par exemple Proximité (ou PROX). Différentes classes de proximités peuvent être introduites.

Normalement, une certaine forme de "lois triangulaire" est imposée aux classes de proximités.

Les proximités ont différantes applications, comme par exemple: graphes et hypergraphes, thermodynamique, physique, mécanique, etc..

PROXIMITY

I) "Distance", in a conversational context, has not the same strict meaning used in mathematical language.

The "distance" between two cities is measured by the time it takes to travel or the price of the fare, etc..

These "distances" are functions of the locations of the cities considered, but they do not comply to the formal definition of distance.

Some kind of a "fuzzy-distance" should be formerly defined.

The word "fuzzy" being so much connected to fuzzy-sets, it was deemed convenient to coin a new word, namely Proximity (or PROX).

Various types or classes of Proximities can be introduced.

Usually some kind of "triangular law" is imposed in many classes of Prox.

Proximities have various applications namely in graphs and hypergraphs, thermodynamics, mechanics, physics etc..

II) Definition of Proximity

1st. Rule

X is a set or a Cartesean product of sets.
The set or sets or the Cartesean product can be algebraically and or topologically structured.

 φ is a set usually algebraically and topologically structured. The elements of φ are numbers, sets, distribuitions etc..

Range
$$(\mathcal{R}) \equiv \mathcal{G}$$

H is a functional relation:

2nd. Rule

The relation of includes some kind of a triangular law, or an associated distance.

III) Examples of Proximities

The best way to present the concept of Proximity is by giving some typical examples.

A) Slack-distance

X is a vector space
$$Q = \{ [h_1, h_2] : h_1, h_2 \in \mathbb{R}^* \}$$

$$\Re \text{ is functional: } (\infty_i, \infty_i) \text{ is } [h_1, h_2]$$

$$\forall (\infty_i, \infty_i) \in X^2$$

and satisfies de following conditions:

a)
$$\mathcal{A}(x_i, x_i) = \mathcal{A}(x_i, x_i) = \begin{bmatrix} h_i & h_2 \\ h_i & h_2 \end{bmatrix}$$

b) If $\mathcal{A}(x_i, x_i) = \begin{bmatrix} h_i & h_2 \\ h_i & h_2 \end{bmatrix}$
 $\mathcal{A}(x_i, x_k) = \begin{bmatrix} h_i & h_2 \\ h_i & h_2 \end{bmatrix}$
 $\mathcal{A}(x_i, x_k) = \begin{bmatrix} h_i & h_2 \\ h_i & h_2 \end{bmatrix}$

c) and
$$(h_2 - h_1) + (h_2 - h_1) \geqslant (h_2 - h_1)$$
 (3)

d) It
$$(x_i, x_k) = \phi$$
, $x_i = x_k$ (4)

The lower limits (h) are bound by an imposed distance, but the upper limits are more free, this enables the proximity just defined to accommodate some "slackness".

Other types of slack-distances can be conceived, as for instance:

a')
$$\mathcal{A}(x_i, x_i) = \mathcal{A}(x_i, x_i) = (h_i, h_2)$$
 (5)

$$b') \quad h_2 + h_2 \quad \geq h_2 \tag{6}$$

$$c') \quad \left(\begin{array}{c} h_2 - h_1 \\ h_2 - h_2 \end{array} \right) \rightarrow \left(\begin{array}{c} h_2 - h_1 \\ h_2 - h_2 \end{array} \right) \quad (7)$$

d')
$$\mathcal{H}\left(\infty; \infty_{\kappa}\right) = \phi$$
, if $\infty_{\kappa} = \infty_{4}, \forall_{i,4}$ (8)

or

a'')
$$\mathcal{A}\left(\infty; , \infty_{i}\right) = \mathcal{A}\left(\infty; , \infty_{i}\right) = \begin{pmatrix} h_{i}, h_{2} \\ ij \end{pmatrix}$$
 (9)

$$b'') \qquad h + h > h \tag{10}$$

$$(\frac{h_2}{is^2} - \frac{h_3}{is^4}) + (\frac{h_2}{is^2} - \frac{h_3}{is^3}) \geqslant (\frac{h_2}{is^2} - \frac{h_3}{is^4})$$
(11)

d'')
$$\mathcal{A}\left(x_{i},x_{k}\right)=\phi$$
 if $x_{i}=x_{k}$, \forall_{ik} (12)

where

or

$$(\alpha_i, \alpha_i) = \mathcal{A}(\alpha_i, \alpha_i) = (\beta_i, \alpha_i) = (\beta_i, \alpha_i)$$

$$b''') \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow$$

c''') is deleted

d''')
$$\mathcal{A}\left(x_i, x_i\right) = \phi$$
 if $x_i = x_i \forall i$ (15)

Note 1: If $h_2 - h_1 \longrightarrow 0$, the slack-distance tends to a normal distance. If $h_1 = \lim_{n \to \infty} h_n = \lim_{n \to \infty} h_2$, when $h_2 - h_1 \longrightarrow 0$ $h_1 \in \mathbb{R}^+$ and $Q = \mathbb{R}^+$, than a distance in the mathematical sense, is obtained.

Note 2: All slack-distances include a distance either on the lower limit, on the upper limit or in the interval.

Note 3: A condition e) could be added, namely:

e)
$$x_i = x_j$$
 if $\Re(x_i, x_i) = \emptyset$ (16)

B) Proximities using fuzzy-sets

If $\mathcal G$ is the universal set and $\bigcap_A (\mathcal A)$ is the membership function of a fuzzy-set A of $\mathcal G$ and $\mathcal A \in \mathcal G$, another kind of "proximities" can be introduced, as for instance:

a)
$$\mathcal{H}\left(\infty; , \infty;\right) = \overline{I}_{A}\left(\varnothing\right)$$
 $\forall_{\infty; , \infty; \in X} (17)$ and $\infty; \neq \infty;$

b) Zadeh fuzzy-sets are used:

c) $\exists \alpha_A$ (then is one and only one α_A), such that

$$\Gamma_{A} \left(\alpha_{A} \right) = 1 , \forall A \leqslant 9$$
 (19)

d) $\forall A \leq G$ is monotonously non decreasing (20)

e)
$$\forall \alpha > \alpha_A$$
, $\bigcap_A (\alpha)$ is monotonously non increasing (21)

f) A distance d is imposed in X such that:

$$\mathcal{L}(x_i, x_i) = \alpha_A$$
 (refer to c)
$$\Gamma_A(\alpha_A) = 1 \text{ and } \mathcal{L}(x_i, x_i) = \Gamma_A(\alpha) \quad (22)$$

g) A composition operation is defined as follows:

$$\mathcal{A}(x_i, x_i) \oplus \mathcal{A}(x_i, x_k) = \begin{bmatrix} A(\alpha) \oplus \begin{bmatrix} A(\alpha) \end{bmatrix} \oplus$$

with the following properties:

$$g_1$$
) $\exists \alpha_{AB} \supset \bigcap_{AB} (\alpha_{AB}) = 1$ (23)

$$(\alpha_3) \ \forall \ \alpha \ \angle \ \alpha_{AB} \) \ \bigcap_{AO} \ (\alpha')$$
 is monotonously non decreasing (25)

$$g_4$$
) $\forall \alpha > \alpha_{AB}$) $\binom{\gamma}{AB}$ is monotonously non-increasing (26)

Note: that the composition operation $oldsymbol{\Theta}$ is similar to a convolution.

C) Proximities using distribuition functions

is a family of distribuition functions as for instance the Gaussian probability density function:

a)
$$(x_i, x_j) \stackrel{\text{A}}{\text{A}} v_i \in \mathcal{G}$$
 (27)

It is functional in the sense that only one distribuition or function is invocated.

b) A convolution operation is introduced
$$\mathcal{H}(x_i, x_i)$$
 o $\mathcal{H}(x_i, x_k) = D_{i,j}$ o $D_{j\kappa} = D_{i,j\kappa}$ (28)

satisfying the following conditions:

$$b_1$$
) $\overline{D_{ij\kappa}} \geqslant \overline{D_{i\kappa}}$ (mean) (29)

$$b_2$$
) $\nabla (D_{ii*}) \geqslant \nabla (D_{i*})$ (variance) (30)

$$b_3) \mathcal{D}_{ij} = \mathcal{D}_{ji} \tag{31}$$

$$b_4) \mathcal{D}_{ii} = 0$$
 , everywhere (3.2)

Note: that no distance is explicitly introduced but rules b_1 , b_2 , b_3) and b_4) are very similar.

The examples A, B and C show the versatility of the "proximity" concept, which is adaptable to real-case problems when the topological distance (Norm, Metrisation. etc.) cannot be applied.

"Proximities" induce in \times quite loose structures but in the background there is a "distance" lurking.

IV) Application of Proximities

Some applications of proximities have been made, namely:

a) Thermodynamics:

The state of thermodynamic system can be described in a n-dimensional vector space, but no distance can be imposed in that space, the distance between two states has no physical sense.

The proximity imposed is the following: (3)

1)
$$X = X R'$$
, R' real numbers (33)

3)
$$\forall_{\alpha,\beta}, x_{\alpha}, x_{\beta} \in X$$
, (x_{α}, x_{β}) $\exists [q_{\alpha\beta}, x_{\alpha}) \in \mathcal{G}$ and \exists is functional. (35)

4)
$$\forall_{\alpha,\beta}$$
, $\begin{cases} 9_{\alpha\beta} = -9_{\alpha\beta} \\ 9_{\alpha\alpha} = 0 \end{cases}$ (antisimetric) (36)

5)
$$\forall d,\beta,\tau$$
, $q_{\alpha\beta} + q_{\beta\tau} + q_{\tau\alpha} = 0$ (37)

If $Q_{\alpha\beta}$ is interpreted as the variation of the entropy in a reversible thermodynamic transformation starting in ∞_{α} and finishing in ∞_{β} , than: The entropy variation Δ S actually accuring in real irreversible transformation starting in ∞_{α} and finishing in ∞_{β} is given by

$$\Delta S \in [9_{\alpha\beta}, \infty) \tag{38}$$

and the "produced" entropy in the real process is:

$$SS([0,\infty), Y(x_{\alpha},x_{\beta}))$$
 and $\alpha \neq \beta$ (39)

b) Classical Mechanics

Rigid rods systems with slack-joints can be studied, using slack-distances (III A). (2)

$$\begin{array}{ll}
\times & \text{vectorial space} \\
\mathcal{G} = \left\{ \begin{bmatrix} h_1 & h_2 \end{bmatrix} : h_1 & h_2 \in \mathbb{R}^+ \right\} \\
\mathcal{R} \left(\infty, \infty \right) = \begin{bmatrix} h_1 & h_2 \end{bmatrix} , \forall \infty, \infty \in \times \end{array} (40)
\end{array}$$

At is functional and:

a)
$$\mathcal{H}(x_i, x_i) = \mathcal{H}(x_i, x_i)$$
 (42)

(43)
$$h_1 + h_2 > h_3$$
 and $h_2 + h_2 > h_2$

c)
$$\left(\frac{h_2}{h_2} - \frac{h_1}{h_1}\right) + \left(\frac{h_2}{h_2} - \frac{h_1}{h_2}\right) > \left(\frac{h_2}{h_2} - \frac{h_1}{h_1}\right)$$
 (44)

d)
$$\left[\mathcal{A} \left(x_i, x_j \right) = \phi \right] = \left[x_i = x_j \right]$$
 (45)

c) Hypergraphs

If
$$\mathcal{E} = (E_i : i \in I \text{ and } E_i \neq \phi)$$
. (46)

$$\bigcup_{X \in \mathcal{I}} E_X = X \qquad \text{and Card } X \text{ is finite} \qquad (47)$$

than $G(X, \mathcal{E})$ is a Hypergraph.

- A fuzzy-proximity can be imposed on $\mathcal E$, as, for instance, the one described in III B, where

$$\mathcal{H}(E;,E;) = \Gamma(\alpha), \forall E_i, E_i \in \mathcal{E}$$
 (48)

- or a distribuition-proximity of the type IIIc) can readily be used, where:

$$\mathcal{A}(E_{i},E_{i})=D_{ii}, \forall E_{i},E_{i} \in \mathcal{E}$$
 (49)

Both types of proximities, with the associated composition-operation, can be used as a figure of merit to choose different paths, connecting two vertices of X belonging to different E_i , E_i \in \mathcal{E} .

SHORT LIST OF KEY-WORDS

Proximity

Prox

Slack-proximity

Slack-prox

Fuzzy-sets proximities

Fuzzy-sets

Distribuition-proximity

Dist-prox

BREVE LISTE DE MOTS-CLES

Proximité

Prox

Proximité-intervale

Prox-int

Proximités-floues

Prox-floue

Proximite-distribution

Prox-dist

SHORT BIOGRAPHY

Mechanical Engineer; Professor at I.S.T. (Portuguese Technical University); now lecturing Automation (Systems).