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Summary: -An introdiction of the concept of Proximity, namely '€ -proximities,
is given, a typical axiomatic is presented; and =an application to -
thermodynamics shows that c ~proximities a:r:e rather flexible.
“This‘is clearly a preliminar 3pre‘sentatfi.on but we hope to have shown

the power of fuzzy sets in connections to € -prox.
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0 - INTROBUCTION

PROXIMITY (PROX) was introduced (11}, to deal with real problems that

di not "fit” in metrizable spaces, and even in pseudo-metrics of different kinds
were not suitable. '

Essentially PROX is a function j?i (eventually a generalized one)
defined oﬁ X x X and taking values in @9 ,AWhen X is the "formal set”

where the images of the real problem are projected and @Q is a suitable set.

Cﬁk is defined in such a way that g, loose triangular law is retained.

Here, the elements of @? are fuzzy sets, with characterizers F
which are of a special kind, namely unlmodalj the justification for this name
is the shape of P that is similar to the unimodal distributions.

Proximities based on the axiomatic introduced in Chapter 1 and using
unimodal characterizers were named € -Proximities, € -PROX for short.

A topology on )( is induced through :H: .

The object here is only to show that a variety of topologies can be
induced in =){ '

Finally an application to thermodynamics is presenteqléghere the
concept of homogeneity is a basic one to define measures in th; thermostatic
space,

Entropy is assimilated to a C -PROX.

Future develcpments are being pursued in, fundamentally, three directions:

Other kinds of Cﬁf and @Q , eventually non-fuzzy, new shapes for T1

i.2., plury-model characterizers and new applications.
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I - Symbology

X

o<
n
€

is a set.

.,y » 2 , w elements of X

is a8 lattice.

S ’ z P P (0() are elements of n— .

&
‘R non-negative real numbers.

A, (_:3 ., X . % . Y oare elements or |\RT
@ € ﬂ\ﬂ*

D%:X:X_.; C,') 3 ("’ca‘i>""‘> ["x)’

REM

TH

supramum of lattice

infimum of lattice
sup;ﬁmum (or maximum), is a connective in JLU ; sup (max)
infimum (or minimum), is a connective in JL 5 inf (min).

order on er .

eguivalent to p» and not = .

-
AXIOM
DEFINITION
REMARK

THEOREM
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II -.The Axioms

In the sequel X 1is a set and JL is a complete/ distributive lattice,

and, in certain cases, an involutive operator {s) can be defined such that

th‘e order of the lattice is inverted; ( \'< ., N, V , o and 1 ) are
the order, the connectives inf (A ) and sup (V ), the infimum and the supremum
of the lattice respectively, QJ is a subset of the family of the functions
defined over [o a M) with values in .ﬂ- .e. c "‘Q'm?

At last it is given a function ﬂ XxX — Q (’SC ‘j) — r,:)

per.oo JL = JL\ {O}

DEF:pl A ternary X CQL ishv\said a e -proximity, if the following
D B

axioms are satisfied:

o ®

on O

St (:J(-»(m Jinting oam GDNCHL

g
. G o Ax la: Tf f‘ 7, Q - then xy (o) =

Df;F.pZ: ny é \/ [ thj (d) Vp( £ \g"f]

i E'DB‘: {di} é .&Lo( € \R” l P—:.-j (0() \xV}

_ x . T a2 x
Ax.,1lb: AL is a closed interval Ll{x %‘7_\ , eventually a

singleton, where Le;j )\*J“ € 1R ced \VI*} < u‘);j

=
Ax.lc: If [-'x9 € (9 , then P‘I\j (Aa) £ I C_Q{L)
_‘f
whenever 0 & oo £ A <L ‘f;‘j T amd

(ded ¥ [xy (#2)
> D(a.)dgz_)&?(c Jd-a_ £ \R*

L) = O

¥
whenever \V.I.j LAg & Ay 3

Ax.1ld: If xy e @ N o!_‘:;;‘

i.e.

VEE S Wd, €IRT) VX RORR:

hY
Ax.le: If *y € g) Px.j 1/\5() has, at most, a countable number
2 , B

of discontinuities.

REMXO The concept of point of discontinuity for monotone functions is

j2

P

the usual one in lattice theory.




DEF.pd: © = .0 d ‘ Mt is discontinuous at 4.
Pey y
X ¥ REM.1: [ / R i . .
‘ // Lﬁx‘j , \fj:x_j j'_wlll sometimes be represented b% A ng): C:‘j :
see REM.6B "
. ™ . .
REM.2: \'-“‘j is the characterizer or membership function of the fuzzy set

just defined, an_d the shape of ng suggests the name of "unimodal

characterizer”.

On j%_ .
Ax.2a: 41 is symmetric, i.e. V’L_pj EX_) :Q.(.g:,‘j)z ﬁ(‘f;m)¢> ng(ci>= P‘j:c(d) )vd

/.
e Yo . Axe2b: Yo g x 5 024 (3‘3,3’;)4—"——"? P:z:"x. (“‘): oecdr /

-

ﬁ,f/f.a/{l /  gefine nyz: IRY _5 L , ¥ {;72 () |
and P:cy‘e (B’) 2 Vo( N [ P::Cy ("J‘) > PYZ CK" "4)]

REM.3: This operation is represented by & , i.e.

] DEF.pS: Let x ¢, 2 € X o T EIR &€ [o7] R 4.

nya = Pc:y & F)z?_
pFst [oye & Vo[ Teyr (), Vee IR ] e Ry

L

DEF.n7: {-5"} & &1’6 D 1 ﬂzyz (K)‘-‘- P;yz}

P G losed int "1[%‘ ’ ] sventually a singlet
x.2c: 3 Y | is a closed interva xye )\-1/7:?2 , eventually a singleton,
n¥ YR3 -+ A ¥
where \T:cyz )\Tltxya € \R" amd \%I‘/?‘ £ \V:t‘/Z
Ax.2d: For % € JSL and Vyé JL , it is
re

fx x vy n* LY . ’ ‘ . /

S lx2 ¥ xyT Ug’IE < Lf’xyi ond Yae £ \Jf)“.x:\{?.

J - Xemel

Jr_,. ;o Ax.Zes \ﬂi is a continuous function /
CP cod ‘vh}\,.-‘fn‘i&i‘ig:j?"(-'—"‘ - -

REM.4: Ax.2d is viewed as fuzzy triangular law and if "crisp"” sets and & "crisp"

o

triangular law are used then an "ecart” is obtainec.

- REEM.S: In some applications, Ax.2b or Ax.2e or both are deleted.
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" III - Theorems

QP8 A (y, %2 8) 2 SLozexR*) ey @ w& E¢ ﬂ}

is the "crisp"” set of =y indexed by £ . E\_ is a closed

interval on | R*.

A (P:r_y ke 8> \{):‘cy.)? ) \.V:’C)"f’faj

DEF.pS:

I>>

(Pa:y N g é) = L Lﬁxy%c‘_ ) \'ny> E,]
A « X Sl
2Ry () >E et |
where > stands for ( = and not = J. A is the "crisp” set of

Pf_-,:y » indexed by E, and an open interval on \R*_

x
REM.B: referring to REM.1, 5{,,(*} can be represented by A (P:cy ) = rxy}

*>

:r:\1'

as the condition imposed is P:Cy (cl) = \

5 /
/0 TH.1: P - /) ~abudeus-
/ pomadl

f ./ — xyz rz y <t AN

- | TH.2: A (T‘iy , £>= ;5 A.@ £V ’i

identically for A ( xy | > (C«)

: 0
/\}' TH.3: IF A (\ Q) is a singleton the characterizer \:’C‘f is the

3
characterizer of a "crisp" singleton in |R :

TH.4: For every - , \/ , 2 € ¥ ., the mapping P:,cyg satisfies the

axioms (ia to le) if both sz/ and PYZ satis{y the same axioms. %_;

' g PROOF fAx.la: If ¥ = O thend =0 and T -A = O and ny CC’) = i

= Fyz CO> = 0 € JL and finally nyz (o) = 0c€ JL

PROCE Ax.1b: Let € = A\ [ e (d)) Ya(z-a)]) (see DEF.2) i
E\,a (z) =% (4) ® \\/z (’b’-d) (see REM.3)
By DEF.5, 6 and 7 it is \I\/z - £° and \1‘12 (x) = F.:c‘_lz
in the closed interval A (Meyz) = £ )= [ Wxye=g s Yeye = E]CW‘VP
ny F () awnd P;z Pya r- o)
and FYECK) V/\ Ly O, Nz (v-2) ]

b e e SRS

TR T e

R
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{;‘13 (’5) .4 Eo and \—:‘j? 2 V nya_ CZO

results P;.],z - (io
PROOF Ax.lc: If ¥ £ T, & L?;‘f* = 50) ¥ 2dy; and T 2 Ky
it is Pz‘_, Qa\z) }:’ P:r_ni QO(.l) ) AX&'C
oo e (-od) 7 e (¥-da) | Axle,
e, VAL Ty () 5 Te (- 2)]
P VAL Ty (), Tye (- )]

and szz (f;) 2 P;;?z (’ﬁ)
similarly:

~-

then PI\/?_ (‘Q) 2 nyi (\S"\\)

1 Yaye = € & %y ¢ Wy

PROOF Ax.1d: If ¥ —>eo, ot and/or (\G' o() > e
ens A [ Ty C) | f‘ya (zy_(x)] —> 0 € JL
or P::\/ (o( - co) _— O € Jr
and P\/z ((‘6‘- d) —> co) —> O€E ST

A +
6 R
k_/? REM ,6{ \112 € \QJ , by construction.
; v - b
o/ g) REM.f: P,IYI C?ff)# ogﬂ, in general and Ax.2d states that P(;a 7 \o:klz
but the set ¥” (see DEF.p7) may not contain O (zerol.
PROOF Ax.le: As both xy and r\jl have at most countable discontinuities,
Em)z has too at most countable discontinuities.
_/C{ ' REM d rsz satisfies Ax.la to Ax.le, and the operator €@ is closed for
.

countable applications and if FIY and Rl?' ) V’JC)\(,Z € X , _/

*43 have no discontinuities for arbifrary applications.




IV - Remarks on Topology

As referred in the introduction, the main goal here is to point out
the adaptability of the € -prox.. '

The topology endowed in ¥ depends up on each application. A natural
suggestion is that the topology in X be such that the mapping ’.'H:‘. X x X._> .).Lm*
be continuous, when ~TUR* is endowed with a topology adjusted to the application.

It is remembered that the concept of discontinuity of E;y supposes 5
already that some kind of topology is in JLU (see REM.O}. Any finer topology .~
than the initial one is suitable. Work is being done now on the concept of

fuzzy balls to endow in X with a suitablée topology. &

les for JL or % !
Many authors have suggested topologies for or » B.8: Seg Ref: 1, +%

31 51 7) B: 9' lD) 11) 180



V - APPLICATION OF PROXIMITIES TO THERMODYNAMICS
A) Homogeheity
// () G is//an universal class of sets T _-),

/ T—g <T> is a partition of |
J o, T, Tg ETT; (7)

Lf is a set of linearly independant real measures (or Qf—-measures]
[ — / 9
\,)mf-nwm-f;‘:ﬂ,gu] e /A.A. ',T —> "R where: }A,»- ¢ Lf s T € G amd R [ffeals]w!"
11;1 ('T) being a partition of v ,» the following expressions apply:
(2) veerr |, T = ¢ \
) « (V1@ ,V (x4 6)
(3) ... U ('Td> = 7
oKX
DEF. 1 Partition 'rl;- (T> is LE -homogereous if:
(4) verns [ (M) _ ps () VT})j%é‘“;'(T)
e oend

P e Fi (Fa) TV, e

exprzssion {4) can be easily transfermed in (5):

51 po (T2 :__ P L) , V T e, (7)
Mo (7T) i (Yo
)U' ( ) V /’A;’: ,-Mie' Lﬁ’

DEF., 2 The fineness KJ of a partition 'ﬂ; () is defined by (81:

I+ <—r>

w1 i i i a is independant of -
Taring in consideration (43 and (5), \(3«.‘ () s p /UL)’

o e [ 2SI Yo () e ®
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DEF. 3.: T~ =— {,ﬂ—- <\ - '
== T = : (= :
is the set of all partitions of |  that have finenesses less than \3 . !
f

TS s \’-' ¥ -homogeneous .
The set | possessing a non void set of partitions \f’ ‘f -homogeneous is

defined as \3 ¥ -homogeneous.

X
DEF. 4; .é = %T: TE G ang T . \(:\{-homogeneou.'as

ng is a sub-set of and is considered \’ \f -homogeneous. i
DEF. 5: If: Vf&* € \T 3 /"{'i (.T.) — ")}’; (-—TJ) <$> T= 1’

i ¢ LE 3 ,}*,{ @ F }"z (‘r’)(::‘;> T * B
for V A T€ Zx < G and \J\f-homogeneous.

Then \Q is an "adeguate" set of linearly independant real measures

Y
{ S -measures) for 5 .

Note that any cther real measures on U can be expressed as a linear

homogeneous function of degree 1 of the measures belonging to \f .

B) An Axiomatic for Thermostatic

¥
Ax. 1 ¢ All thermodynamic system is an universal class of sets 5 G
KD L? -homogeneous and ‘-? is an "adequats” set of linearly
- »
independant real measures | X -measures) for I3 '

Card U{ = W , finite.
For \(3 —>o (zero), V}A* Iy L? , },\}_ ("\‘) is continuous on -éx.

——

Ax., 2 : There are two real measures ( ~N -measures), entropy )JA and

internal energy /V;.»

If U\?E Sl_}*” -) /""i"’/""i} then /“’» =¥ [L{] and ‘-19 U/U«M
is a N + 1 Euclidean Convex Space.

/LL& and /,A. are duel functions. exgratis:
- 5

(M‘Lm' )AM>/"‘5= comd. ((vvxcxx /us) /"'f;*= CorenAX.
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Note 1 : Continuous trajectories (lines) can be described on the surface

/""M"FE)’“5> Foreee ﬂ;]zoif P> o

Note 2 : The thermodynamic space is not metrisable, but a proximity can be

defined, as it will be shown in Cl.

C)Proximity in thermodynamics

1) Reversible and irreversible trajectories*®’

In all trajectories (reversible or otherwise) the starting state T % and

X
finishing state T* belong to Z; \:T ~-homogeneous.

I7 all the other intermediate states belong to 3 then the trajectory is

declared reversible, if not irreversible,

A general irreversible trajectory is symbolised in-the following fashion:

x —
T K , -r~:, T4 being respectively the starting
o e— x
and finishing point and V 5 ) e G

—_ Y
Reversible trajeciories are represented as follows: ' S—— T

®
2) Definition of a Proximity on &

96 = >L( /Ma*. )V/M; € Lf (Cartesean Product)

© ——Y
The proximity of two states T ¢

F (=,9) = [=y ()

whers r‘-x,tj (d) £ GT c @ . (defined in2 e )

is given by:

-
(3 satisfies to the following conditions:

-
a) C) € C

53 [ (o) = o

c) The non-decreasing branch starts at & = o .

Thus the general aspect of r1 is the following:



Iy

&)

< GL

z corresponds to the region of the"real”trajectories, the most plausible,

and the reversible trajectories to &£ = o , r’(a) — o , which can be

interpreted as "impractible” because F ()= o,

Comments:

1) All reversible trajectories are equiproximate o = O , and their

likelirood, [’ (¢ = 0) = © , is zero, physically ideal,

2) All irreversible trajectories correspond to e > © and their likelihood
e
is positive | Qo( >O) > o0

3) The most likely proximity corresponds to the zone where r‘(ol) is maximum.

— Y —
4) Considering the two trajectories, 1 >~ 1@ v 1 <= ‘xyz L’o’)
and T~y V%= (L. (%) . The zone of higher 1ikelihood is

shifted tc greater values of « in Ps:yz than in sz .

" . D) Entropy Froduction

If & 4is interpreted as entropy production, X = § S then

)

Ecg (.°‘> = r;\, ( S 5) and some simple conclusions can be taken;

—
- In a reversible trajectory {(process), o = O then \,C‘j (O> - O,

the likelihood of such a process is nill,

4

x
The max [ P:zg (04>] = [" corresponds to the entropy production

S S = A& more likely to occur.

The set {o(:f’,.,.(c&) > S ¢ P’}E [SG.J 39’:\

is an interval of occurence of trajectories which are S -likely

to occur,

¥ A i A




- If, max [r,x% k'&)] = l_;:"z and ~ax [r—xa (ﬂ’):]: P,:z

and
(va , 20 ) = {’b’: ey (&) = Y;'%}
Csa,Se] = 5(04 o («) = F;ZB
then F;z 3 Y:;z

x

. " x ¥
and S £ TBa and Sg, < Oy

which means the entropy production in the process "YT/“M-Ta//Eg—Tz

—_ —2
is greater than in the process \ :,//\Eg V", for the same
likelihood (or level of membership).

E) Time and Entronv Production

L]
IT time 't is considered a monotonous function of /;

‘ng, some

1"l

interesting interpretations are possible,

a) If & =0 then £ = oo . A process that would take eotime
for completion<would be-eventually reversible.

b) The typical ‘tx (or the most likely time) would correspond

to {ﬂ * (chnckx Y1 Co(2>.

c) As & —> oo, ‘t‘_>o , and ?(o()_)o. this could be

interpreted as follows: when the time of the process is less than
£ , then the likelihood of the process would diminish tending

to zero with + — 0 ,

Conclusion

»
Space X = ‘{ can be topologically structured with a class @ :é G of

proximities and some form of a fuzzy distance, Proximity, between thermo-

dynamic states can be defined.
Entropy oroduction is a monotonous function of <X , eventually & = S S,

Time is an inverse function of g 5 .




V - Conclusion
4 The flexibility of Proximities gives a certain amount of freedom in
- - fent T X S
the structuring of X . by choosing a convenient . — 2 € .
\R* can be substituted by a suitable compact, various JL and

respective topologies are presented in the literature and can be used.

In some applications to graphs and hyper-graphs, one can delect Ax.2b
and when the real system projected in X is non-homogeneous, Ax.2c can be

supressed.

Work is being done on proposing suépable topologies for S and X .
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